×

Warning

Error loading component: com_tags, Component not found.

Error loading component: com_tags, Component not found.

Error loading component: com_tags, Component not found.

Error loading component: com_tags, Component not found.

Error loading component: com_tags, Component not found.

Error loading component: com_tags, Component not found.

Error loading component: com_tags, Component not found.

Parasite-insecticide interactions: a case study of Nosema ceranae and fipronil synergy on honeybee

Abstract

In ecosystems, a variety of biological, chemical and physical stressors may act in combination to induce illness in populations of living organisms. While recent surveys reported that parasite-insecticide interactions can synergistically and negatively affect honeybee survival, the importance of sequence in exposure to stressors has hardly received any attention. In this work, Western honeybees (Apis mellifera) were sequentially or simultaneously infected by the microsporidian parasite Nosema ceranae and chronically exposed to a sublethal dose of the insecticide fipronil, respectively chosen as biological and chemical stressors. Interestingly, every combination tested led to a synergistic effect on honeybee survival, with the most significant impacts when stressors were applied at the emergence of honeybees. Our study presents significant outcomes on beekeeping management but also points out the potential risks incurred by any living organism frequently exposed to both pathogens and insecticides in their habitat.

Aufauvre J, Biron DG, Vidau C, Fontbonne R, Roudel M, Diogon M, Viguès B, Belzunces LP, Delbac F, Blot N. Sci Rep. 2012;2:326. doi: 10.1038/srep00326. Epub 2012 Mar 22.
Full article

The sublethal effects of pesticides on beneficial arthropods

Abstract

Traditionally, measurement of the acute toxicity of pesticides to beneficial arthropods has relied largely on the determination of an acute median lethal dose or concentration. However, the estimated lethal dose during acute toxicity tests may only be a partial measure of the deleterious effects. In addition to direct mortality induced by pesticides, their sublethal effects on arthropod physiology and behavior must be considered for a complete analysis of their impact. An increasing number of studies and methods related to the identification and characterization of these effects have been published in the past 15 years. Review of sublethal effects reported in published literature, taking into account recent data, has revealed new insights into the sublethal effects of pesticides including effects on learning performance, behavior, and neurophysiology. We characterize the different types of sublethal effects on beneficial arthropods, focusing mainly on honey bees and natural enemies, and we describe the methods used in these studies. Finally, we discuss the potential for developing experimental approaches that take into account these sublethal effects in integrated pest management and the possibility of integrating their evaluation in pesticide registration procedures.

Desneux N, Decourtye A, Delpuech JM. Annu Rev Entomol. 2007;52:81-106. Review.

Glutamatergic and GABAergic effects of fipronil on olfactory learning and memory in the honeybee

Abstract

We investigated here the role of transmissions mediated by GABA and glutamate-gated chloride channels (GluCls) in olfactory learning and memory in honeybees, both of these channels being a target for fipronil. To do so, we combined olfactory conditioning with injections of either the GABA- and glutamate-interfering fipronil alone, or in combination with the blocker of glutamate transporter L-trans-Pyrrolidine-2,4-Dicarboxylicacid (L-trans-PDC), or the GABA analog Trans-4-Aminocrotonic Acid (TACA). Our results show that a low dose of fipronil (0.1 ng/bee) impaired olfactory memory, while a higher dose (0.5 ng/bee) had no effect. The detrimental effect induced by the low dose of fipronil was rescued by the coinjection of L-trans-PDC but was rather increased by the coinjection of TACA. Moreover, using whole-cell patch-clamp recordings, we observed that L-trans-PDC reduced glutamate-induced chloride currents in antennal lobe cells. We interpret these results as reflecting the involvement of both GluCl and GABA receptors in the impairment of olfactory memory induced by fipronil.

El Hassani AK, Dupuis JP, Gauthier M, Armengaud C. Invert Neurosci. 2009 Nov;9(2):91-100. doi: 10.1007/s10158-009-0092-z. Epub 2009 Oct 23.

Effect of fipronil on side-specific antennal tactile learning in the honeybee

Abstract

In the honeybee, the conditioning of the proboscis extension response using tactile antennal stimulations is well suited for studying the side-specificity of learning including the possible bilateral transfer of memory traces in the brain, and the role of inhibitory networks. A tactile stimulus was presented to one antenna in association with a sucrose reward to the proboscis. The other antenna was either not stimulated (A+/0 training), stimulated with a non-reinforced tactile stimulus B (A+/B- training) or stimulated with B reinforced with sucrose to the proboscis (A+/B+ training). Memory tests performed 3 and 24h after training showed in all situations that a tactile stimulus learnt on one side was only retrieved ipsilaterally, indicating no bilateral transfer of information. In all these groups, we investigated the effect of the phenylpyrazole insecticide fipronil by applying a sublethal dose (0.5 ng/bee) on the thorax 15 min before training. This treatment decreased acquisition success and the subsequent memory performances were lowered but the distribution of responses to the tactile stimuli between sides was not affected. These results underline the role of the inhibitory networks targeted by fipronil on tactile learning and memory processes.

Bernadou A, Démares F, Couret-Fauvel T, Sandoz JC, Gauthier M. J Insect Physiol. 2009 Dec;55(12):1099-106. doi: 10.1016/j.jinsphys.2009.08.019. Epub 2009 Sep 5.

Subchronic exposure of honeybees to sublethal doses of pesticides: effects on behavior (2)

Abstract

Laboratory bioassays were conducted to evaluate the effects on honeybee behavior of sublethal doses of insecticides chronically administered orally or by contact. Emergent honeybees received a daily dose of insecticide ranging from one-fifth to one-five-hundredth of the median lethal dose (LD50) during 11 d. After exposure to fipronil (0.1 and 0.01 ng/bee), acetamiprid (1 and 0.1 microg/bee), or thiamethoxam (1 and 0.1 ng/bee), behavioral functions of honeybees were tested on day 12. Fipronil, used at the dose of 0.1 ng/bee, induced mortality of all honeybees after one week of treatment. As a result of contact treatment at 0.01 ng/bee, honeybees spent significantly more time immobile in an open-field apparatus and ingested significantly more water. In the olfactory conditioning paradigm, fipronil-treated honeybees failed to discriminate between a known and an unknown odorant. Thiamethoxam by contact induced either a significant decrease of olfactory memory 24 h after learning at 0.1 ng/bee or a significant impairment of learning performance with no effect on memory at 1 ng/bee. Responsiveness to antennal sucrose stimulation was significantly decreased for high sucrose concentrations in honeybees treated orally with thiamethoxam (1 ng/bee). The only significant effect of acetamiprid (administered orally, 0.1 microg/bee) was an increase in responsiveness to water. The neonicotinoids acetamiprid and thiamethoxam tested at the highest dose (one-tenth and one-fifth of their oral LD50, respectively) and fipronil at one-five-hundredth of LD50 have limited effects on the motor, sensory, and cognitive functions of the honeybee. Our data on the intrinsic toxicity of the compounds after chronic exposure have to be taken into account for evaluation of risk to honeybees in field conditions.

Aliouane Y, El Hassani AK, Gary V, Armengaud C, Lambin M, Gauthier M. Environ Toxicol Chem. 2009 Jan;28(1):113-22. doi: 10.1897/08-110.1.

disrupting food pan website small

How-Neonicotinoids-Kill-Bees-6

Newsletter

Stay updated on PAN Europe's campaigns for pesticide free food and subscribe to our quarterly newsletter:

<< Signup here! >>